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Abstract

Cloud computing, or the migration of computing resources from the end user to

remotely managed locations where they can be purchased on-demand, presents several

new and unique security challenges. One of these challenges is how to efficiently detect

malware amongst files possibly stored in multiple locations across the Internet over

congested network connections. This research studies how such an environment will

impact performance of malware detection.

A simplified cloud environment is created where network conditions are fully

controlled. This environment includes a fileserver, a detection server, the detection

mechanism, and clean and malicious file sample sets. The performance of a novel

malware detection algorithm called Malware Target Recognition (MaTR) is evaluated and

compared with several commercial antivirus applications at various congestion levels.

MaTR is an engineering proof-of-concept prototype and has not been multithreaded or

optimized for performance as the commercial products have been. This research evaluates

performance in terms of file response time and detection accuracy rates.

Although MaTR demonstrates competitive response times at lower congestion levels,

when severe packet loss is introduced MaTR’s response times are slowed by a factor of up

to 817 for clean files and 334 for malicious files. Commercial products are slowed at most

by a factor of 16 for malicious files and 137 for clean files often outperforming MaTR.

MaTR’s true mean response time when scanning clean files with low to moderate levels of

congestion is roughly 0.05s, which is not statistically significantly different than leading

commercial response times. MaTR demonstrates a slightly faster response time, by

roughly 0.1s to 0.2s, at detecting malware at these congestion levels, but MaTR is also the

only device that exhibits false positives with a 0.3% false positive rate. This is expected as

MaTR is the only non-signature based detection mechanism. MaTR’s true positive

detection rates are extremely competitive at 99.1%.
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Evaluation of Malware Target Recognition Deployed in a Cloud-Based

Fileserver Environment

1 Introduction

Technology and electronics are gradually becoming dependent on a cloud computing

model. While there are many definitions of cloud computing, it basically describes the

migration of computing resources from the end user to remotely-managed locations where

these resources can be accessed or purchased on demand [Mic09]. Commonly used

applications such as Gmail, Dropbox, and even Facebook all implement forms of cloud

computing as they rely on remote resources that consumers do not have direct access or

control. This transition to relying on computing resources that exist in remote, often

unknown locations presents several unique security challenges. This research addresses

part of the challenge of how to detect malware on fileservers offered as a cloud-based

service.

In a cloud fileserver environment, users perceive their files to be stored in one central

location when, in reality, they could be located on multiple hosts across the Internet. The

distributed storage of files, network congestion, and sheer volume of files, can severely

impact the performance of traditional malware detection techniques. Commercial

antivirus scanners place significant computational resource demands on modern

computers when scanning local files. The purpose of this research is to determine how a

cloud fileserver environment will impact the performance of remote malware detection.

Specifically, this research observes the execution of different malware detection

mechanisms when scanning files in a remote location with varying levels of congestion.

This research conducts performance evaluation of commercial antivirus products and a

1
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generic detection algorithm called Malware Target Recognition (MaTR). MaTR

demonstrates promising results in initial testing and has the potential to be highly effective

in a cloud-based fileserver [DRP+12][Mer11].

The goals of this research are to emulate a simplified cloud fileserver environment

and evaluate file response times and detection accuracies. The version of MaTR used in

the experiments requires the entire file to be loaded into memory, which involves

transferring it across a potentially congested network. As such, this research hypothesizes

that MaTR’s file response times will be marginalized and will not outperform the

commercial detection mechanisms. This research also hypothesizes that congestion rates

will not impact detection rates, and MaTR continues outperform other detection

mechanisms in detection accuracy rates as it has demonstrated in past experiments

[DRP+12].

Chapter 2 of this thesis presents existing literature and research related to the

problem described above. Cloud computing is defined and file storage of a cloud based

service is discussed. Modern malware detection techniques are described along with the

MaTR algorithm. Some related work regarding malware detection as a cloud-based

service is also discussed. Chapter 2 concludes by synthesizing some of the information in

the literature review to provide support for the underlying assumptions and decisions

made during the experimental design.

Chapter 3 discusses the methodology for the experimental design. This includes a

more in-depth problem definition, detailed goals of this research, hypotheses for expected

research outcomes, and the approach to accomplishing the goals. This chapter also

provides details on how the cloud environment is emulated and the experiments are

conducted. Lastly, Chapter 3 presents how the results of the experiments will be

statistically analyzed.

2
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Chapter 4 presents the results of the experiments. These include analysis of system

response time and detection rates. These results are compared between different

mechanisms at different factor levels, and an interpretation of the results is provided.

Chapter 5 provides the conclusion to this research. This includes a synopsis of the

research conducted, a summary of the results, and key conclusions that are drawn from

those results. This chapter also contains recommendations for future work and potential

follow on research.

3
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2 Literature Review

This chapter describes relevant research relating to malware detection in a cloud

fileserver environment. Section 2.1 defines cloud computing and outlines essential

characteristics of a cloud computing environment. Section 2.2 discusses cloud-based

fileservers to include key features of commercial implementations. Section 2.3 covers

current methods of detecting malware, including signature-based and anomaly-based

detection. Section 2.4 discusses some related research involving antivirus as a service

hosted in the cloud. Lastly, Section 2.5 extends the literature review by synthesizing some

of the research to provide a framework for the experimental design in Chapter 3.

Existing malware detection research for a cloud-based environment is not present in

this review as it does not currently exist. Modern malware detection technologies

primarily focus on protecting individual clients. This makes sense as files usually do not

execute on a fileserver and are often stored locally. However, with the evolution of cloud

computing and the migration of computer resources into the cloud, one must consider the

need and potential benefits of scanning executables hosted on a cloud fileserver.

2.1 Cloud Computing Defined

The term “cloud computing” is used rather loosely in industry and social settings,

and for good reason. With the Internet’s ubiquity in modern living, many argue that some

level of cloud computing is now a common occurrence. This research heavily focuses on

cloud computing technology, and thus requires a formal definition of cloud computing.

The National Institute of Standards and Technology (NIST) defines cloud computing as

follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly

4
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provisioned and released with minimal management effort or service provider

interaction [MG11].

The NIST definition also includes five essential characteristics, three service models, and

four deployment models which are discussed later in this chapter. While this definition is

somewhat complex, it simply describes many aspects of the Internet and the migration of

computer resources from the end user to remotely-managed locations where they can be

purchased on-demand [Mic09]. There are several well-known examples of cloud

computing in use today including webmail providers, remote fileservers such as Dropbox,

and Google Docs. Figure 2.1 provides a visualization of cloud computing and some of its

common applications.

Figure 2.1: Cloud Computing Visual Diagram [GB11]

5
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Amazon offers a clear example of cloud computing [Ser11]. Their service, called

Amazon Elastic Compute Cloud (EC2), allows consumers to buy computing resources to

run servers or whatever software they like. EC2 is rapidly scalable, both up and down,

highly configurable, and they only charge consumers for what they use. In many cases this

approach can be significantly cheaper than a company buying and maintaining local server

hardware and resources [Ser11].

This research must accurately model a cloud computing environment, and as such the

key characteristics that make such an environment must be defined. The NIST definition

also provides the essential characteristics, service models, and deployment models of

cloud computing.

2.1.1 Essential Characteristics. This section describes the essential characteristics

that are included as part of NIST’s definition of cloud computing [MG11].

• On-demand self-service. Consumers can easily acquire or purchase additional

computing resources such as server time and network storage. This capability

should be available on demand without human interaction from the provider.

• Broad network access. Access to cloud capabilities is available over the network.

This access should be compatible with a wide variety of network devices such as

smart phones, laptops, and PDAs.

• Resource pooling. The provider’s computing resources are pooled so that can be

physically or virtually assigned and reassigned to consumers on demand. The

consumer generally is unaware of, and has little control over, where the computing

resources physically exist. Some of these pooled resources may included storage,

processing, memory, network bandwidth, and virtual machines.

6



www.manaraa.com

• Rapid elasticity. Capabilities are rapidly and elastically provided to the consumer as

needed. From the consumer’s perspective, resources appear unlimited and are

available for purchase at any time.

• Measured Service. Cloud services are optimized by providing a gauge of resource

consumption at some level of abstraction. Resources measured include storage,

processing, and bandwidth. This ability allows resources to be monitored,

controlled and reported. This information is used by both the provider and the

consumer to provide transparency into the utilized service.

These characteristics are later evaluated to ensure this research accurately emulates a

cloud environment.

2.1.2 Service Models. There are three different service models as described by the

NIST, which are briefly described below. These descriptions are used to identify which

model this research falls under [MG11].

• Cloud Software as a Service (SaaS). This service model includes capabilities

provided to the consumer to use applications running on the provider’s cloud

infrastructure. Access to these applications is provided through a thin client, such as

a web browser or another application possessed by the consumer. The consumer

does not manage or control the underlying cloud infrastructure beyond possible

configuration settings within the cloud software. An example of this service model

is Gmail.

• Cloud Platform as a Service (PaaS). This service model provides consumers with

the capability to deploy their own software onto the cloud infrastructure. The

consumer does not manage the underlying infrastructure such as the operating

systems, network, or other computing resources. The software deployed must be

supported by the cloud environment hosting the application, often requiring

7
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applications to be developed in certain programming languages or with specific

tools. The consumer controls the deployed applications and possibly configuration

settings of the hosting environment. For example, a consumer desires to perform

computationally-intensive task such as protein folding. A cloud platform service

may be purchased, and the consumer can deploy his protein folding application to

the platform which consumes cloud computing resources.

• Cloud Infrastructure as a Service (IaaS). This service provides the consumer with

the capability to provision fundamental computing resources such as processing,

storage and networks. This offers the consumer the ability to deploy and run

arbitrary software including operating systems and applications. The consumer still

does not control the underlying cloud infrastructure. An example of this is a

consumer purchasing a virtualized server operating in the cloud.

A cloud-based fileserver falls under either SaaS or IaaS depending on how the

fileserver is configured. An implementation such as Dropbox employs a software

front-end accessible through a web browser with a cloud infrastructure as the back-end.

Consumers do not have direct access or control to the infrastructure hosting Dropbox,

whose implementation follows the SaaS model. A fileserver could also be deployed on a

fully functioning virtualized server operating in the cloud, which would be Infrastructure

as a Service model. This research conducts experiments that emulate the IaaS model. A

fully functioning fileserver is created on virtualized hardware and accessed across a

network that emulates the Internet.

2.2 File Storage as a Cloud-based Service

This section discusses several popular commercial implementations of a cloud-based

fileserver. The operation of each implementation is explained as well as the security

measures they offer.

8
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2.2.1 Dropbox. Dropbox, founded in 2007, offers users 2GB of free online storage

which can be accessed from anywhere with an Internet connection. It offers a simple way

to sync files amongst multiple computers, contains features to easily share files and

folders in your Dropbox with others, and may be used as a file backup tool. Additional

storage of up to 100GB may be purchased [Dro11].

Dropbox creates a folder on the computer upon installation. Anything placed in that

folder is synchronized to Dropbox’s cloud fileserver as well as all other computers that

have the client installed. This provides a simple drag-and-drop interface to upload files to

the cloud [Dro11].

2.2.1.1 Unique Features. The following items are unique features that

dropbox provides to consumers [Dro11].

• Files are synced to the computer’s hard drive making them available offline.

• Dropbox works with all operating systems as well as mobile devices.

• Dropbox only transfers the parts of files that change as opposed to re-uploading the

entire file upon each change.

• Before a file is uploaded, the Dropbox client or web interface first creates a hash of

the file. It compares the hash with the hash of every other file in existence on the

Dropbox servers. If an exact duplicate of the file already exists somewhere in the

Dropbox cloud, it is simply copied locally from one location on the fileserver to the

location hosting the consumers files. This is generally much faster, eliminating the

need for some files to be uploaded over a potentially congested network.

2.2.1.2 Security Features. The following items are security features that are

provided by Dropbox [Dro11].
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• Dropbox keeps a one-month history of items uploaded so they can be easily

recovered if accidently deleted.

• Dropbox transmits files to and from the cloud over an encrypted channel.

• All files stored with Dropbox are encrypted in the cloud and cannot be viewed by

employees or others unless explicitly shared.

2.2.2 Egnyte Cloud Fileserver. Egnyte is another cloud-based fileserver that

supports corporate environments. Egnyte eliminates the need to purchase traditional

fileservers, backup mechanisms, and File Transfer Protocol (FTP) solutions, saving the

company money in the long run. As opposed to Dropbox, they offer support for much

larger storage capacities and large file sizes [Egn11].

2.2.2.1 Unique Features. The following items are unique features provided

by Egnyte [Egn11].

• Egnyte employs a hybrid-cloud mechanism that involves network-attached storage

containing a copy of the cloud contents on the local network to allow access to the

files with Local Area Network (LAN) speeds. These documents are then synced to

the cloud for additional backup. This also provides access when the local network

loses outbound connectivity.

• Egnyte also offers a personal local cloud when the hybrid-cloud approach is not

available. This simply stores the files on the local computer or directly attached

storage, and synchronizes the documents to the cloud from there.

• Sharing is simplified by adding users to an “Address Book” for a particular file or

folder. When uploaded to the cloud, the users in the address book will have access

to the appropriate files. This feature also includes access control permissions such

as read or write.

10



www.manaraa.com

2.2.2.2 Security Features. Egnyte encrypts all transfers to and from the cloud.

However, it does not encrypt the data on the cloud fileserver. Instead, the implementation

has strict access controls verifying usernames and passwords on each access. Egnyte also

provides consumers with descriptions of the robust security mechanisms in place at their

storage facility and guarantee the security of the data held within [Egn11].

2.2.3 Commercial Cloud-based Fileserver Summary. Commercial cloud-based

fileserver solutions are becoming popular on the Internet (along with other

commercialized cloud-computing resources). Many other implementations exist with

similar features. For example, box.com offers the ability to edit or view known file types

through a web interface. This includes editing Word and Excel documents or watching

videos straight from the browser without having to download the files.

An important aspect of these fileserver solutions is the restriction to read/write

permissions on the cloud infrastructure. A file cannot be executed on a cloud fileserver.

Instead, it must be downloaded and executed locally. This is an important characteristic

that this research emulates during experimental design.

2.3 Detecting Malware

This thesis uses the term malware to describe a broad range of “malicious software”

categories. These can include viruses, Trojans, dialers, backdoors, and exploits.

Christodorescu et al. define malware simply as a program designed with malicious intent

[CJS+05]. Over time, malware complexity has continued to increase, with advanced

obfuscation and packing techniques to hide from antivirus (AV) scanners, anti-debugging

and anti-disassembling mechanisms to thwart analysis attempts, and a wide array of attack

vectors to bypass intrusion detection systems. Likewise, antivirus software continues to

become equally complex to achieve continued protection.
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This research focuses on detecting Windows Portable Executable (PE) files. As such,

the focus of the research reviewed also deals with detecting PE files. The two primary

approaches for detecting malicious software are dynamic and static analysis (or a “hybrid”

approach combining both) [IM07]. Dynamic analysis involves examining code with CPU

emulation or while it is executing. In the context of this research, this is impossible due to

the permission settings of the emulated cloud-based fileserver (read/write only).

Therefore, this literature review focuses on static analysis techniques.

A malware detector is simply the application of a malware detection technique.

According to [IM07], detectors take two inputs: the executable in question and some type

of knowledge of either malicious behavior or normal behavior.

2.3.1 Static Analysis. Static analysis interrogates an executable’s syntax or

analyzes internal structure properties to determine whether it is malicious. Within the

realm of static analysis, detection is accomplished through either observing anomalies

usually absent in benign files or via signatures matching pre-existing malware [IM07].

2.3.1.1 Anomaly-based Detection. Anomaly detection attempts to determine

known good characteristics of executables, and identifies malware based on divergences

from that knowledge. In the context of the malware detector, the second input is

knowledge of known good behavior and valid file structures. There are generally two

phases to anomaly detection, a training or learning phase, and a detection phase. In static

anomaly detection, the detector uses characteristics about the file structure of the program

to detect malware. A key advantage to anomaly-based detection is that it does not require

execution of the potentially malicious code [IM07].

Stolfo et al. [SWL07] presents a new detection mechanism for stealthy malware that

is embedded in other files as an augmentation to existing Antivirus (AV) software. An

example of this is malicious code embedded in a PDF document. This type of malware is
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one example that effectively thwarts signature-based detection mechanisms, and thus

poses a great threat as stealthy malware. Stolfo’s technique involves a statistical binary

content analysis of n-grams (simple byte sequences). When a file is scanned, the n-gram

results are compared against known good n-grams of the same file type which the authors

call fileprints. A mismatch indicating anomalous file sections could indicate the presence

of malware embedded in the file requiring further examination. Their research focuses on

malware that has been injected into either the head or the tail of the file. When malware is

injected into the middle, this detection technique is less effective. Their experiments

achieved between 72% and 94.5% detection rates of embedded malware depending on the

malware’s position in the file and size of the n-grams. As this method works regardless of

the malware’s contents, it excels at detecting novel malware where signature-based

detection fails. A limitation of the technique is that it is based on a static snapshot of the

training set, which could be an irrelevant sampling. Stolfo et al. also conduct experiments

to determine whether this technique is capable of distinguishing malware from “normal”

Windows executable fileprints, and to establish whether the technique is effective in

identifying malware that has been packed or obfuscated. The results from these

experiments vary widely and need further research to determine whether n-gram analysis

is effective in those applications.

Shafiq et al. [SKF08] continue Stolfo’s research on n-gram analysis. They implement

conditional, or Markov n-gram, as opposed to the previous research’s traditional n-grams.

After a scan, the Markov n-gram’s entropy rate is compared to that of the known good file

type. Their research shows that malware injections significantly perturb the entropy rate of

the known good file, which is how the malware is identified. The results of the experiment

shows that this technique is much more effective at detecting malware than the traditional

n-gram technique. Furthermore, their approach is able to detect malware injected

anywhere in the file, as opposed just the head or tail of the file as with Stolfo et al.

13



www.manaraa.com

[SWL07]. The Markov n-gram analysis also reduces the false positive rate of the previous

technique by up to 48%. Still, the false positive rates are much higher than traditional AV

software, with rates as high as 32%. As such, these techniques are best used to categorize

malware as suspicious, and should be used alongside a commercial AV product.

In [Erd04], Erdelyi argues that the most reliable way of detecting stealth malware is

through clean booting. Clean booting involves booting the computer with as few operating

system components and drivers as possible, such as a DOS prompt. This simplifies

detection of malware that hides itself. However, this is becoming more difficult with

modern operating systems, such as NT-based systems, that still load a few basic drivers

even when booting into safe-mode. If one of these drivers contains malicious code, it is

capable of hiding itself at the kernel level. This is another form of anomaly-based

detection as it uses a clean boot as knowledge of “good behavior”.

Weber et al. [WSSG02] creates a tool called Portable Executable Analysis Toolkit

(PEAT) designed to detect the presence of malware attached to executables. The toolkit

implements three types of detection categories: 1) simple static checks, 2) visualization,

and 3) statistical analysis. Static checks analyze the code for anomalies. For example,

observing an entry point in an unusual section might suggest that malware is present. The

visualization analysis uses graphical representations of the executable to detect anomalous

and potentially harmful code. These include viewing ASCII strings, program disassembly

results, and pictoral representations of memory access views. Finally, statistical tests such

as instruction frequencies and patterns, register offsets, etc. are performed to discover

anomalous code. This tool functions more as an analysis tool than an automated detector

and requires an experienced operator to detect malware.

This research focuses on evaluating the performance of a PE malware detector called

Malware Target Recognition, or MaTR [DRP+12]. Dube et al. use a decision tree learning

algorithm and static heuristic features to discover malware. Their method does not rely on
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a pristine disassembly, but instead uses high-level program information and common

anomalies for malware detection. Dube et al. combine several of the anomaly-based static

analysis techniques described above, as well as incorporate several of their own

techniques. Early experimental results are very promising. Using large data sets of

confirmed malware and non-malicious executables, MaTR demonstrates above a 99%

accuracy rate with false positive and false negative rates less than 1/10%. MaTR also

excels at detecting novel malware. It achieves a 99% detection rate which is vastly

superior to the 60% detection rate a union of three commercial AV products achieve.

Furthermore, MaTR is excellent at detecting obfuscated and packed malware; the

presence of these defensive mechanisms alone often indicates malware. Early experiments

show MaTR to be highly efficient with respect to runtimes. The average runtime to scan

278 samples is only 0.9s, whereas the runtime results on the same data set from three

commercial AV products were 43s, 56s and 391s [DRP+12].

2.3.1.2 Signature-based Detection. Signature-based detectors require known

malicious behavior as their input [IM07]. As the name suggests, characterizing malicious

behavior, or creating signatures is the key to this method’s success. This is the most

common mechanism used by AV products today. However, new malware as well as

slightly obfuscated old malware can often bypass these signature-based detection schemes

[CJS+05].

Schultz et al. [SEZS01] were one of the first to present a technique for discovering

new malware through a data mining framework. Their research method uses extracted

data features including Dynamic Link Libraries (DLL) used, DLL function calls, and

strings from existing malware and creates signature files. When scanning an unknown file,

the framework looks for similarities with existing malware. Various experiments resulted

in accuracy rates ranging from 83% to 97%, all significantly higher than the traditional

signature technique which had an accuracy of just under 50%. The authors do note that
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should the implementation details of the detection framework be compromised, many of

these detection techniques could be evaded with simple obfuscation.

Kolter and Maloof extend Schultz’s research in [KM04] and [KM06]. Their research

distinguishes malware from benign files as well as classifies malware based on its

payload. They use n-grams from large sets of benign and malicious executables, and use

various inductive methods including naive Bayes, decision trees, support vector machines,

and boosting. Boosted decision trees perform the best with a true positive rate of 98% and

false positive rate of 5%.

Henchiri and Japkowicz further explore data mining capabilities for signature-based

detection in [HJ06]. Their goal is applying machine learning to improve the problem of

feature selection. They conduct an exhaustive search on a large set of known malware to

determine some generic features. Then, the features that are most representative of

malicious code are collected and used as the signature. Their research also evaluates the

predictive power of a classifier by examining malware dependence relationships. A

cross-validation scheme is used in an experiment to simulate a real-world virus outbreak.

Depending on the feature set used, they achieve some promising results with up to 94%

accuracy rates.

Sung et al. create an algorithm called SAVE (Static Analyzer of Vicious Executables)

which attempts to detect known malware that is metamorphic, polymorphic, or has been

obfuscated [SXCM04]. The authors argue that all versions of the same malware share a

core signature that is a combination of several features from the code. The features they

explore in their research are system calls. Sung et al. argue that even if a malware sample

is obfuscated or restructured, the set of system calls is similar. As such, similarity

measurements including cosine, Jaccard, and Pearson’s correlation measures are taken

between a sample under inspection and malicious signatures. The experiment is composed

of only 20 samples, but SAVE successfully detects all of them. Further research with
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larger sample sets and obfuscation techniques is required to determine SAVE’s true

effectiveness.

Christodorescu et al. conducts a series of research endeavors on signature-based

static analysis and detection with comparisons to commercial AV products [CJ03] [CJ04]

[CJS+05]. Their research uses control flow graphs (generated in IDA pro) as detection

signatures in order to defeat common obfuscation techniques such as inserting nops

(assembly code instruction for no operation) or code transposition which they show to

thwart many antivirus techniques. They develop a proof-of-concept tool called SAFE

(Static Analyzer For Executables) which is designed to resilient against these obfuscation

techniques. In a limited experiment, SAFE detects all obfuscated malware.

Their method suffers from two key drawbacks. First, the overhead of generating and

comparing control flow graphs can be substantial. The authors believe the observed

performance is insufficient malware detection capacity in operational environments,

especially when analyzing large executables. The second major drawback is packing.

While the authors discuss obfuscation, as a static analyzer, SAFE is likely unable to

generate a control-flow graph given a packed executable, a rather simple obfuscation

technique [CJ04]. The authors extend this research in [CJS+05] using similar, refined

techniques and achieve more reliable results in detecting malware. However, scan runtime

performance is still a major point of concern.

2.4 Related Work

2.4.1 Antivirus as a Cloud-based Service. AV software has a reputation for

negatively impacting users due to the software’s intense resource demands. These

demands stem from growing signature files caused by the constant influx of new malware

samples, the rising time involved with de-obfuscating and unpacking binaries, and the

continually increasing volume and size of files. Likewise, AV products require frequent

signature updates, burdening bandwidth resources and making it less likely consumers are
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up to date [YA09]. As these factors continue to hinder host-based AV efficiency, an

alternative solution based in the cloud becomes more attractive. Several antivirus vendors,

such as Panda Security, have already shifted their approach to a cloud-client architecture

and call it the “next generation” of cloud computing [Res07].

The fundamental concept of AV in the cloud is that the complex analysis and

detection mechanisms are relocated from the end user into the cloud. The traditional

malware detector is replaced with a lightweight client that is responsible for capturing

executables entering the host system and sending them to the cloud for further analysis

[OCJ07]. This approach offers several advantages and disadvantages:

• The network-based service possesses the resources to employ multiple scanning

techniques, such as multiple AV engines, simultaneously to improve detection rates.

• End-user’s computers benefit from the replacement of highly-complex AV software

with a lightweight client which requires significantly less resources. Furthermore,

the less complex client decreases the chance that it could contain exploitable

vulnerabilities. This client provides the user with information regarding scan

progress and results.

• As the signature database only needs to reside in one centralized location, clients no

longer need to continually download updates for their local signature databases.

This alleviates problems with bandwidth usage and consumers being out-of-date

[OCJ07].

• One disadvantage is that all all clients in the enterprise will try to send the same

executable to the cloud. This is avoided in some systems by hashing the file and

validating the hash before sending the entire executable into the cloud.

2.4.1.1 Panda Cloud Antivirus. In 2006, Panda Security launched a

cloud-based security platform which they call “Collective Intelligence” [Ila09]. The
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Collective Intelligence collects and analyzes malware samples, as well as provides various

protection mechanisms from the cloud. Panda Security offers several clients that

communicate with the Collective Intelligence, including a free, simple AV client for end

users as well as more robust network security solutions for businesses.

The three pillars of the Collective Intelligence are:

1. collecting data from the community,

2. automating the processing of that data, and

3. releasing the knowledge extracted back to the community.

Collective Intelligence is able to collect data extremely quickly and effectively due to the

cloud-client architecture. Whenever a suspicious executable is detected on any client, the

file or parts of the file are sent to the Collective Intelligence for further analysis. Panda

Security argues that a fundamental problem with modern AV solutions is that malware

analysis labs are overwhelmed by the thousands of new malware samples appearing each

day [Res07]. The Collective Intelligence automates this process, detecting and classifying

suspicious executables without any human interaction. This is achieved through a

combination of signature detection, behavioral analysis and blocking, heuristics, as well

as new technology for which Panda Security does not provide details. Lastly, Panda

Security releases this information through a client interaction with the Collective

Intelligence. Panda security offers multiple clients with different capabilities, but the

functionality of the basic AV client is the most relevant to this research.

Basically, this lightweight client captures executables before they run on a system

and computer a hash of the file. The hash is sent to the Collective Intelligence to

determine if it matches existing malware or known goodware. If it is malicious, the file is

blocked from executing, if not, the client possesses other tools (such as heuristics and

behavioral analysis) to determine if the file is suspicious. Upon discovering a suspicious
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file, the end-user is warned and asked to allow the file to be uploaded to the Collective

Intelligence. Here, it is analyzed and categorized within six minutes. Now, when any other

user executes the same file, they receive an instant report of its legitimacy. The Collective

Intelligence takes the process of malware discovery, analysis, signature generation, and

signature file distribution, which took days or weeks to fully complete, and reduces it to

under six minutes. Furthermore, the burden on the end-user’s computer is significantly

reduced as all the complex analysis is done in the cloud [Ila09].

There are several drawbacks to cloud-based AV. Panda AV claims that files are

analyzed and categorized in less than six minutes, however this does not include the time

it takes to upload the file to the Collective Intelligence. Few users are willing to wait six or

more minutes to execute a file, and will often ignore the prompts from the AV client to

upload the file. Also, when users are disconnected from the internet, Panda’s offline

detection mechanisms could miss well known malware that signature based AV products

would easily detect. Another key drawback to cloud AV is how it detects malware running

in memory. This is something that host-based products do frequently, as many malware

samples never write themselves to the disk.

2.5 Cloud Malware Detection Framework

The purpose of this section is to extend the literature review to provide some

background for the methodology of experimental design presented in Chapter 3. Research

regarding cloud computing is synthesized to ensure a cloud computing environment is

accurately modeled. More specifically, it ensures that the experiment results from a very

simplified version of a cloud environment may be extrapolated into a true cloud

computing environment.

Many aspects of NIST’s formal definition of cloud computing described in

Section 2.1.1 are superfluous to this research as the primary concern is the performance
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evaluation of malware detection methods. Each of NIST’s essential characteristics and

their relationship to this research are listed below.

• On-demand Self-service and Rapid Elasticity These cloud capabilities are not

directly related to this research. There are no actual consumers in the experiment,

and the files on the fileserver are controlled and static. The exclusion of these

characteristics from the emulated cloud environment does not preclude the results

experimentation to be extended to a cloud environment.

• Broad Network Access This capability is a necessary aspect of this research’s

experimentation methodology. A simple network interface is used that implements

standard networking protocols between the fileserver and the detection mechanism.

If the fileserver’s resources are not made available over a network, the results cannot

be extended to a true cloud computing environment.

• Resource Pooling This characteristic of cloud computing addresses the underlying

architecture of the cloud environment, and should be transparent to the consumer.

Likewise, the underlying architecture should be transparent to the detection

mechanism, and should not impact performance. Any physical or virtualized

environment hosting the fileserver will provide results that can be accurately

extrapolated to a true cloud fileserver environment.

• Measure Service Again, there is no true producer-consumer relationship in this

experiment. Monitoring service usage is not necessary for this experiment.

Excluding this capability does not impact the value of research results in a true

cloud architecture.

In summary, a simple cloud environment is constructed for the experiments whose

results and analysis are extendable and applicable to a real-world cloud environment.

Details of the experimental design are presented in the next chapter.
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3 Methodology

This chapter presents the methodology this research uses to evaluate the performance

of various detection mechanisms operating in a simplified cloud fileserver environment.

Section 3.1 defines the problemthis thesis addresses, and Section 3.2 outlines the goals and

hypotheses of the research. Section 3.3 discusses the hih-level approach to accomplishing

these goals. Sections 3.4 through 3.9 outline the system boundaries, system services,

workload, performance metrics, system parameters, and factors. Section 3.10 discusses

the evaluation technique, and finally Section 3.11 explains the experimental design.

3.1 Problem Definition

Traditionally, malware detection mechanisms reside on the end-user’s machine where

they examine local files to discover malware. However, the migration of both file storage

and computational resources into the cloud presents several new challenges to the

traditional model. First, the transfer of processing power and resources from the end-user

into the Internet may render the host machine incapable or inefficient at local detection of

malware. Likewise, users’ files can be distributed across multiple remote locations. When

a host wants to scan its files, it must gather file information from the Internet with likely

impacts from available bandwidth. This leaves two alternatives. First, a virus detection

mechanism may be employed on each host acting as a fileserver, which could be difficult

based on the number of hosts as well as the level of access granted to those hosts.

However, with regard to experimentation, this alternative is trivial as it is basically a

traditional malware detection model. The other option is to implement a virus detection

mechanism in a centralized location, and scan the fileservers remotely. This approach will

likely be affected by bandwidth constraints. Little research currently exists to examine

how detection mechanisms operate when employed in a network environment.
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3.2 Goals and Hypotheses

The purpose of this research is to evaluate the performance of various detection

mechanisms employed in a simplified cloud environment. This can be broken down into

three goals:

1. Model a simplified cloud fileserver environment in which experiments are

conducted whose results are valuable to a true cloud fileserver environment. The

network congestion levels within this environment are easily controlled.

2. Evaluate how MaTR performs in regards to file response time when compared to the

performance of commercial detection mechanisms when implemented as remote

scanners in the modeled cloud fileserver environment and exposed to various

network conditions.

3. Evaluate how MaTR performs in the same environment in regards to detection

accuracy of known malware and benign files.

In regards to the second goal, this research hypothesizes that MaTR will not

outperform the file response times of the other detection mechanisms. MaTR’s detection

algorithm has proven to be faster than commercial virus scanners in past experiments, but

it is currently a proof-of-concept prototype has not been optimized in any way to include

handling network congestion. Although MaTR requires only a small amount of

information to determine a file’s validity, in its current configuration it still needs the entire

file to be read into memory. This necessitates transferring the full file across a potentially

congested network. This research hypothesizes that the effect of transferring the entire file

across a congested network will marginalize MaTR’s performance advantage when

compared to commercial detection mechanisms. In regards to the third goal, this research

hypothesizes that network congestion will not impact MaTR’s detection accuracy, and

MaTR will continue to demonstrate leading true positive detection rates.
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3.3 Approach

To accomplish the aforementioned goals, a simplified cloud fileserver environment is

emulated and the performance of various detection mechanisms in that environment is

evaluated. A true cloud fileserver has many different configurations and limitations. This

research identifies conditions that could affect the performance of a centralized malware

scanner, and replicates those conditions with varying severity to conduct experiments to

evaluate performance. The observations from these experiments are then compiled and

analyzed with the goal of drawing statistically significant conclusions.

3.4 System Boundaries

The System Under Test (SUT) includes the fileserver, the detection server, network

connections, and the detection mechanism located on the detection server. Figure 3.1

shows a white box diagram of the System Under Test including inputs and the output

metrics that this research measures. The fileservers are populated with benign files as well

as known malware. However, these are not part of the System Under Test but rather

workload parameters. The Component Under Test (CUT) is the detection mechanism.

While many cloud fileservers migh have distributed implementations, replicating a

distributed fileserver is not necessary. The network connections to the fileserver and their

congestion level are the primary concern. Creating multiple connections to the data with

potentially varying congestion levels needlessly complicates the experiments, and make it

impossible to draw any valid statistical conclusions. Therefore, the scope of this research

will be limited to experiments implementing one detection server with a single connection

to one fileserver. The scope of this research is also limited to malware detection and will

not quarantine or remove malware. MaTR relies on the Portable Executable (PE) format,

and is ineffective at detecting malicious Adobe Reader files or malicious macros in

Microsoft Office Files. Therefore, as this experiment is evaluating the effectiveness of
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MaTR against other detection mechanisms, the only files being scanned are executables.

These experiments make no attempt to optimize any of the detection mechanisms’

performance in a network environment. Settings in the AV products are adjusted to

maximize available CPU usage.

Figure 3.1: Cloud Malware Scanner

3.5 System Services

The SUT provides several services with associated outcomes as a stand-alone system.

As the system must store files in remote locations, the SUT provides the service of remote

file storage. The outcome of this service is the storage and retrieval of data in a remote

location. This implies read/write capabilities, and remote execution is not considered. A

potential but rare failure outcome is a hard drive failure and stored files becoming

corrupted. Another system service is transportation of data. The outcome of this service is

the delivery of data to a remote location. Any transmission failures are assumed to be

corrected by the network protocol. Lastly, the system provides various malware detection

services. The outcome is the determination whether or not a remote file is benign or

malicious. There are several potential failure outcomes when determining file validity. A

false positive occurs when a benign file is deemed malicious. False negatives may also

occur when malicious files are deemed benign.
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3.6 Workload

The only workload submitted to the system are the executables presented to the

malware detection mechanism. These include both known malware and benign executable

files. Clean files are necessary to populate the fileservers and to accurately model a

real-world fileserver. The presence of clean files also allows for evaulation of false

positive rates. The clean executables are collected from Windows 2k3 Server Edition and

are renamed to their MD5 hash. This creates a unique fingerprint of the file and allows

duplicate files to be removed. To maximize the number of unique files, executables are

extracted from the baseline installation of Windows Server 2k3, after the installation of

each service pack, and after small groups of online updates are installed. For the

conclusions of this research to be scientifically valid, experiments conducted in this thesis

must not use any of the executables used when developing and training MaTR [DRP+12].

To ensure this, a script is developed that compares executables’ hashes gathered for this

experiment with the hashes of the executables used in Dube et al’s previous work

[DRP+12] and deletes the duplicates. This script is found in Section A.1 of the

Appendices. After this process is completed, 8,238 unique executables comprise the base

of the clean sample set.

Malicious files are obtained from a large online database of known malware called

VX Heavens [20111]. This is the same database from which Dube et al. collected known

malware specimens in order to train and test MaTR [DRP+12]. As with the clean samples,

it is vital that unique samples that were not used to train MaTR are collected in order to

gauge MaTR’s detection accuracy performance fairly. To accomplish this, an exclusion

list was built based on the previous work [DRP+12]. An index of all the malicious

filenames hosted on VX Heaven’s database is extracted, and 8,270 samples are randomly

selected that do not match malware listed in the exclusion list.
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MaTR has demonstrated an exceptional capacity in detecting novel malware

[DRP+12] [Mer11]. However, novel malware is very difficult to obtain, and as the primary

focus of this research is response time performance, novel malware is not included as a

workload parameter.

3.7 Performance Metrics

There are two metrics this research uses to evaluate performance. The average

amount of time detection mechanisms require to evaluate a file is measured. This is

especially important when an “on-demand” cloud detection model is used, or when files

are scanned whenever they are accessed. Specifically, this research records average file

response time. Response time is the time measured in seconds from when a query

regarding a file is sent to the fileserver to when the file’s malware classification is

ascertained. This information is calculated using

Average File Response T ime =
S ize o f S ample S et

T ime Elapsed
(3.1)

In determining the most effective detection mechanism for a cloud fileserver environment,

the ability to accurately identify malware is also essential. Accuracy rates are evaluated

for each of the detection mechanisms. This includes true positive and false positive rates,

measured as a decimal between zero and one. These rates are easily calculated with

TruePositiveRate =
#PositivesMS

MS
, and (3.2)

FalsePositiveRate =
#PositivesCS

CS
, (3.3)

where #PositivesMS is the number of malicious file predictions in the malicious sample

set, MS is the size of the malicious sample set, #PositivesCS is the number of malicious

file predictions in the clean sample set, and CS is the size of the clean sample set.
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3.8 System Parameters

System parameters include anything that could affect the performance of the SUT.

They are listed below along with explanations of how they could affect the system.

• Network Congestion This impacts the rate that data is transferred from the

fileserver to the detection mechanism. Network congestion can be influenced

through the bandwidth of the connection as well as the frequency of packet loss that

the connection experiences.

• Size of Files The size of various files being scanned can affect the amount of data

that must be sent to the detection mechanism. This can have an impact on the

response time demonstrated by the detection mechanisms.

• Detection Mechanism Used Several commercial and free malware detection

mechanisms are used in the experiment, as well as the novel detection algorithm

MaTR.

• CPU Speed on the Detection Mechanism Host Insufficient processing resources

possessed by the detection server can decrease the performance of the detection

mechanisms.

• CPU Speed of the Fileservers Insufficient CPU speed on the fileservers can inhibit

their ability to respond to data requests.

• Hard Drive Read Speed of the Fileservers This affects the amount of time it takes to

respond to requests from the detection mechanisms.

• Network Components Employed This includes the virtual network adapters,

cabling, switches, and routers. Older network protocols and slower components

affect the performance of the SUT.
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• Host Operating System (OS) The host OS affects both the fileserver and the

detection server.

3.9 Factors

Factors are system parameters varied to observe their impact on performance. The

factors for this experiment are shown in Figure 3.1. The parameters this experiment varies

to observe their effect on performance are network congestion and the detection

mechanism used. Network congestion affects the bandwidth available to send data across

the network. This research tests three levels of network congestion: 1Gbps available

bandwidth with no packet loss, 100Mbps available bandwidth with no packet loss, and

100Mbps available bandwidth with 5% packet loss. In all congestion factor levels, there is

no additional background traffic other than the basic communication required by the OS

and TCP/IP (Transmission Control Protocol/Internet Protocol). Experiments are

conducted in a closed network containing only the detection server and the fileserver in

order to eliminate extraneous interference contaminating experiment results. The 1Gbps

factor emulates the environment of a Local Area Network with maximal connection

speeds. The 100Mbps imitates a network environment with more limited connection

speeds, such as one might find when communicating across the Internet. The 5% packet

loss emulates the effect of a highly congested network with large amounts of background

traffic. The level of 5% is chosen based on the results of validation testing with several

levels of packet loss. When packet loss is increased much above 5%, file transfers across

the network begin failing before they complete. A 5% packet loss demonstrates a

significant performance impact on transfer times while consistently completing the

transfer process.

The other factor is the detection mechanism used. There are four detection

mechanism factor levels implemented in this experiment including three commercial
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detection mechanisms and MaTR. This research does not provide the identity of the

commercial detection mechanisms.

Table 3.1: Factors

Factor Network Congestion Detection Mechanism

Level 1 1Gbps AV Product A

Level 2 100Mbps AV Product B

Level 3 100Mbps w/ 5% Packet Loss AV Product C

Level 4 - MaTR

3.10 Evaluation Technique

The evaluation technique for this experiment is emulation. An analytic or

mathematical evaluation technique is not appropriate for the situation as there is no

underlying analytic or mathematical model. The measurement technique is not used

because obtaining administrative rights on an actual cloud-based fileserver would be very

difficult. Furthermore, it is challenging to control network congestion to observe changes

in performance as it would impact the fileserver’s operation capabilities. Therefore, this

research emulates a simplified version of a cloud based fileserver. The data scanned and

the levels of network congestion are controlled and the performance of the detection

mechanism is monitored.

As discussed earlier, many cloud fileservers implement a distributed fileserver

approach with varying levels of redundancy. Not only is this approach difficult to

replicate, but it would make drawing statistical conclusions more difficult and complicate

observations. The essential impacts of congestion to a remote malware detection

mechanism can be replicated and observed with a single network connection to the data.

The experimental setup for this research is illustrated in Figure 3.2. A detection server and
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a fileserver are created for each detection mechanism. The fileserver is populated with

both malware and clean files. The detection mechanisms remotely scan the malicious and

benign files separately, and performance in terms of response time and accuracy rate is

recorded. Each detection mechanism is exposed to the same sample sets to ensure the

performances are fairly compared. All the servers in the experiments are virtual machines

running in VMware Workstation [20110]. Experiments are repeated with varying levels of

network congestion introduced. The congestion is modified with built-in congestion

controls in VMware. Figure C.1 in Appendix C shows an example of the bandwidth

controls available to the LAN segments in a VMware team. Statistical analysis and

conclusions are drawn in Chapter 4.

Figure 3.2: Experiment Setup

The components required by the experiment are:

• Servers This experiment requires a fileserver and a detection server for each of the

four detection mechanisms, a total of 8 servers. These servers are emulated with

VMware Workstation 7. Each server is configured with 2GB of RAM, an Intel Xeon

X5670 running at 2.93GHz, and a 40GB hard disk drive. The network interfaces are

emulated and controlled with VMware Workstation. These hardware specifications

should not have a significant impact on the performance of the SUT in comparison

to the performance impact of network congestion. These servers are emulated on
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two Dell PowerEdge R610 servers. They each have 64GB of memory, two six-core

Intel Xeon Processors running at 2.93GHz, and 1TB of storage.

• Software Each server runs fully updated Microsoft Windows Server 2003 at the

time of the experiment. The fileservers implement Microsoft Sharing Service for

simple file and folder sharing to other network devices. VMware Workstation 7 is

used to emulate the file and detection servers.

• Detection Mechanism The different detection mechanisms installed on the

detection server are MaTR and three commercial AV products whose identity is

undisclosed. They are referred to as AV Products A, B, and C.

• Networking Components The networking components are emulated by VMware

Workstation. VMware provides the capability of LAN Segments. When a computer

is joined to a segment, a new network connection is created on that machine and it is

able to communicate with all other computers joined to the same LAN Segment.

VMware allows the bandwidth and amount of packet loss to be controlled within a

segment, as shown in Figure C.1 in Appendix C.

There are several ways these experiments are validated to ensure the performance results

are legitimate. Preliminary testing with AV Product C shows that there is a significant

difference in response time between clean files and malicious files. Malicious files require

additional processing and take significantly more time to scan. As such, all mechanisms

are exposed to malicious and benign files separately. This is a valuable distinction as

various detection mechanisms may respond to the different file types in unique ways.

Also, most target environments would not contain the high quantities of malware that this

experiment uses to obtain performance observations.

Another validation concern is the performance of VMware’s bandwidth controls. To

ensure these controls alter bandwidth as expected, a program called LAN Speed Test is
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used at each bandwidth factor level. This program measures the transfer rate of data

across a network, and substantiates the expected effect of VMware’s bandwidth controls.

The volume of experiments that are conducted necessitate that multiple experiments

and virtual machines run simultaneously on a single server. Specifically, up to eight virtual

machines, and thus four experiments are conducted at a time on the Dell R610 Servers.

The simultaneous execution of multiple experiments on a single server could cause a

negative impact on performance results of those experiments. To ensure that this is not the

case, validation testing is conducted with AV Product C at 1Gbps. Identical experiments

are first run consecutively, and then simultaneously. The results of these two validation

experiments are compared, and there is no statistical difference in the true mean response

time with those experiments. Results of the validation scan are found in Tables B.2 and

B.3 in Appendix B. Validation testing is not conducted with any other factor combinations.

The last validation step is ensuring that bandwidth constraints are not impacting

detection accuracy of the various mechanisms. This is easily validated by comparing the

accuracy results from the different factor levels, and confirming that they are the same.

3.11 Experimental Design

A full-factorial design is used. Each detection mechanism is tested with each network

congestion factor level. Equation 3.4 calculates the number of experiments conducted in a

full-factorial design.

n =

k∏
i=1

ni (3.4)

A study with k factors with the ith factor having ni levels requires n experiments. This

experiment has two factors. The first factor, network congestion, has three levels, while

the second factor, the detection mechanism used, has four levels, resulting in a total of 12

experiments.
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To compare the outcomes of these experiments with statistical significance, this

research uses 95% confidence intervals. Confidence intervals are used to estimate

population parameters (often the population true mean) with a chosen level of confidence

given parameters observed in samples (such as the sample mean). For example, response

time observations from these experiments are used to calculate a confidence interval for

true mean response time that should be understood as, “the true mean response time of the

detection mechanism on malicious files operating at 100Mbps lies somewhere within the

bounds of the confidence interval with 95% confidence”. When comparing two detection

mechanisms, if the bounds of their confidence intervals overlap at all, then there is no

statistically significant difference between the mechanisms. If they do not overlap, then

there is a statistically significant difference between mechanisms with 95% level of

confidence. Confidence intervals are expressed as

C.I. = [x̄ − ME, x̄ + ME] (3.5)

where x̄ is the observed sample mean and ME is the margin of error. The margin of error

is expressed by

ME = CV ∗ S E (3.6)

where CV is the critical value and S E is the standard error. There are several steps in

computing the critical value.

• First, α = 1 − con f idencelevel
100 is calculated. For all experiments, α = 1 − 95

100 = 0.05.

• Next, the critical probability value is calculated with p∗ = 1 − α
2 = 1 − .05

2 = 0.975.

• The inverse of the standard normal cumulative distribution with a probability of p∗

is calculated (”NORMSINV(p∗)” funtion in Excel), which returns the critical value,

CV .

• For all experiments, CV = 1.96.
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Standard error, S E, is calculated with expression S E = s
√

n where s is the standard

deviation of the sample parameters observed in the experiments, and n is the number of

experiments.

In order to use confidence intervals, multiple samples from a population must be

collected. This allows multiple sample parameters to be calculated, and a standard error to

be determined. To emulate the effect of sampling a population multiple times, this

research randomly divides the clean and malicious files into 10 disjoint partitions, each

with roughly an equal number of files. For example, 8,270 malware samples are randomly

downloaded from VX Heavens, and then randomly divided amongst 10 folders each with

827 files. This is effectively the same as sampling the malware population 10 times,

excluding duplicates. Separate scans are conducted on each group of files with the same

detection mechanism and the same congestion level. This provides a standard error

between the scans, and allows a 95% confidence interval to be calculated for the true mean

response time and true mean detection rate for a given detection mechanism at a certain

congestion level. This approach also has the effect of replicating each experiment 10

times. An example of an experiment’s results and the calculation of the confidence

interval are shown in Table B.1 in Appendix B

3.12 Methodology Summary

This chapter outlines the methodology used to create an experiment to evaluate

various detection mechanisms in a simplified cloud-based fileserver environment. The

research goals are delineated, and the approach to accomplishing those goals is discussed

along with hypotheses regarding expected research outcomes. All aspects of the

experimental design are fully described, including experimental boundaries, system

services, workload, performance metrics, system parameters, and factors. The evaluation

technique used is emulation, and details for the construction of the simplified cloud-based

fileserver are provided. Performance is measured in terms of average file response time in
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seconds and accuracy rates in the form of true positive and false positive rates. The

experiment uses confidence intervals to analyze and compare the performance of the

detection mechanism.
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4 Results and Analysis

This chapter presents and analyzes the results of the experiments outlined in Chapter

3. The first three sections discuss the response times of the scans and are broken down by

the congestion factors: 1Gbps, 100Mbps, and 100Mbps with 5% packet loss. Section 4.4

interprets those results, discussing the implication of the data as well as anomalies

observed. Section 4.5 analyzes and draws statistical conclusions regarding the detection

rates of the various mechanisms. As expected, the congestion factors do not affect the

detection rate. Section 4.6 gives an overview of the results and focuses on MaTR’s

performance compared to the other mechanisms.

4.1 Experiments Conducted in 1 Gbps Environment

This experiment’s purpose is to evaluate the performance of the various detection

mechanisms with maximal bandwidth available between the detection server and the

fileserver. During validation testing of the 1Gbps configuration, the observed transfer rate

is substantially lower than the ovailable bandwidth. In other words, the hardware is the

limiting factor at this congestion level and does not utilize the full 1Gbps. In this

configuration, scan times across the network are only slightly longer than scanning files

locally due to the overhead in TCP network protocols.

4.1.1 Malicious Files. Table 4.1 shows the results of the experiment on the

malicious files at 1Gbps available bandwidth. Again, 8,270 samples are used which are

partitioned into 10 equal groups. These groups provide a measure of variance which is

used to calculate confidence intervals, whose bounds are also displayed in Table 4.1. The

mean AV Product C response time is larger than the other three detection mechanisms,

and the lower bound of the AV Product C response time does not overlap the upper bound

of AV Product A, AV Product B, or MaTR. Therefore, it can be said with 95% confidence
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that the true mean of the AV Product C response time for malicious files at 1Gbps is

greater than the other three detection mechanisms.

Table 4.1: Average Response Time for Malicious Files at 1Gbps in Seconds

Mechanism Average Response Time Lower Bound (γ =95%) Upper Bound (γ=95%)

AV Product A 0.157678356 0.143400729 0.171955982

AV Product B 0.128778718 0.105586773 0.151970663

AV Product C 9.888391778 8.434897885 11.34188567

MaTR 0.033385732 0.030131119 0.036640345

The data from Table 4.1 is shown as a graph in Figure 4.1. The AV Product C data is

excluded from the figure as the magnitude of the result is so large it makes comparison of

the other mechanisms difficult. The confidence intervals of the AV Product A response

time and the AV Product B response time of malicious files at 1Gbps do overlap, so there

is no statistical difference between the true mean of their response time. The bounds of

MaTR’s response time confidence interval not visible due to the relatively small

confidence interval width (due to low variance) are not shown in Figure 4.1. As they do

not overlap any mechanism, it can be said with 95% confidence that the true mean of

MaTR’s response time of malicious files at 1Gbps is faster than the other three detection

mechanisms.
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Figure 4.1: Malicious File Response Times at 1Gbps (Excluding AV Product C)

4.1.2 Clean Files. Table 4.2 and Figure 4.2 show the response times of the

detection mechanisms when scanning the 8,238 clean files at 1Gbps. AV Product C is still

statistically significantly slower than the other three detection mechanisms, but to a lesser

degree. The confidence intervals for the response times of AV Product A, AV Product B,

and MaTR all overlap, so there is no statistical difference between the true mean response

time of clean files at 1Gbps within those mechanisms.

Table 4.2: Average Response Time for Clean Files at 1Gbps in Seconds

Mechanism Average Response Time Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 0.048191556 0.038943646 0.057439466

AV Product B 0.067605345 0.008508202 0.126702488

AV Product C 0.224928335 0.20443024 0.24542643

MaTR 0.04717087 0.032522313 0.061819427
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Figure 4.2: Clean File Response Times at 1Gbps

4.2 Experiments Conducted in 100 Mbps Environment

These experiments scan the same files in a network environment limited to a

bandwidth of 100Mbps. Validation testing verifies that file transfer rates are limited to the

virtual available bandwidth limit and not the hardware. Thus, these results provide an

understanding of how the various detection mechanisms perform in regards to file

response time when bandwidth is limited. Packet loss is not introduced in these

experiments.

4.2.1 Malicious Files. Table 4.3 shows the results of the experiments scanning

malicious files at 100Mbps. This data is also graphed in Figure 4.3. Again, AV Product C

is significantly slower than the other detection mechanisms to the extent that it makes

visual comparison difficult, and thus it is excluded from the figure. While the 95%

confidence intervals of AV Product A and AV Product B appear close, inspecting the raw
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data in Table 4.3 shows they do not overlap and thus AV Product B has a statistically

significant faster mean response time. MaTR proves to have the fastest average response

time when scanning malicious files at 100Mbps with a mean of just over 30 milliseconds.

The 95% confidence interval for MaTR is so narrow due to low variance that it is not

visible in Figure 4.3.

In summary, these experiments demonstrate with 95% confidence that the true mean

response time when scanning malicious files at 100Mbps is different for all detection

mechanisms. Specifically, the response times follow the following relations

MaTR < AV Product B < AV Product A < AV Product C

.

Table 4.3: Average Response Time for Malicious Files at 100Mbps in Seconds

Mechanism Average Response Time Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 0.228657799 0.214599315 0.242716284

AV Product B 0.166868198 0.12325677 0.210479626

AV Product C 11.01197098 8.808123583 13.21581838

MaTR 0.031608222 0.030188789 0.033027656
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Figure 4.3: Malicious File Response Times at 100Mbps (Excluding AV Product C)

4.2.2 Clean Files. Table 4.4 and Figure 4.4 show the response time results of the

experiment conducted on clean files at 100Mbps. Response times are all easily viewed

and compared on the same graph. The lower bound of the AV Product C 95% confidence

interval is adjacent to the upper bound of the AV Product B confidence interval, but does

not overlap, and is well above the other detection mechanisms. Thus this data

demonstrates with 95% confidence that the true mean response time of AV Product C

while scanning clean files at 100Mbps is slower than the other detection mechanisms. The

confidence intervals of AV Product A, AV Product B, and MaTR all overlap, and thus

there is no statistically significant difference in their true mean response times.
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Table 4.4: Average Response Time for Clean Files at 100Mbps in Seconds

Mechanism Average Response Time Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 0.08909507 0.0600486 0.11814154

AV Product B 0.125861606 0.027765685 0.223957528

AV Product C 0.268512074 0.232256237 0.304767911

MaTR 0.050153963 0.023631253 0.076676672
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Figure 4.4: Clean File Response Times 100Mbps

4.3 Experiments Conducted in 100 Mbps Environment with 5% Packet Loss

The purpose of these experiments is to evaluate the performance of the various

detection mechanisms scanning clean and malicious files in a heavily congested network

environment. A bandwidth of 100Mbps is again provided between the detection

mechanisms and the fileservers, however 5% packet loss is now introduced. This level of

congestion proves to severely impact file transfer rates during validation testing, reducing
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it to less than 7Mbps. Results of validation testing also tend to be more inconsistent, as the

packet loss induced by VMware is random.

4.3.1 Malicious Files. Table 4.5 and Figure 4.5 show the results of the experiment

conducted on malicious files at 100Mbps with 5% packet loss. All the results are

statistically significantly slower than the data from previous levels. Again, AV Product C

is much slower than the other mechanisms, to the extent that the information is excluded

from Figure 4.5. The data demonstrates with 95% confidence that the true mean response

time for malicious files is different between each mechanism. Specifically, the response

times follow the relations

AV Product B < AV Product A < MaTR < AV Product C

.

Table 4.5: Average Response Time for Malicious Files at 100Mbps with 5% Packet Loss
in Seconds

Mechanism Average Response Time Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 3.259613059 3.113973163 3.405252956

AV Product B 1.526723096 1.325079081 1.72836711

AV Product C 70.96493349 52.37379614 89.55607085

MaTR 8.778113664 7.482280426 10.0739469
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Figure 4.5: Malicious File Response Times 100Mbps with 5% Packet Loss (Excluding AV
Product C)

4.3.2 Clean Files. Table 4.6 and Figure 4.6 show the response time results

returned from scanning clean files at 100Mbps with 5% packet loss. As with the malicious

files, all the response times are slower than the previous congestion levels. When 5%

packet loss is induced, MaTR becomes statistically significantly slower than the other

three detection mechanisms. AV Product A, AV Product B, and AV Product C’s

confidence intervals all overlap, thus the data suggests that there is no difference between

their true mean response time when scanning with 100Mbps available bandwidth and 5%

packet loss.
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Table 4.6: Average Response Time for Clean Files at 100Mbps with 5% Packet Loss in
Seconds

Mechanism Average Response Time Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 2.566652609 0.740194778 4.393110439

AV Product B 2.312508995 0.801929355 3.823088635

AV Product C 4.191570326 3.349887102 5.03325355

MaTR 13.0294188 6.758817099 19.30002051
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Figure 4.6: Clean File Response Times at 100Mbps with 5% Packet Loss
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4.4 Interpretation of Results

This section interprets the data from Sections 4.1-4.3 and synthesizes statistical

conclusions about the performance of the various detection mechanisms. This section also

highlights unexpected results and anomalies in the data.

4.4.1 100Mbps Congestion Factor’s Impact on Performance. When bandwidth is

limited from 1Gbps to 100Mbps, validation testing reveals that file transfer rates are

significantly impacted. As such file response time for the detection mechanisms is

hypothesized to also be impacted as file information must be transferred through the

congested network. However, looking at the 95% confidence intervals from the data in

Tables 4.1, 4.2, 4.3, and 4.4, this is not the case for AV Product B, AV Product C, and

MaTR. The data shows that there is no statistically significant change in true mean

response time for each of these three mechanisms when the congestion level changes from

1Gbps to 100Mbps for both clean and malicious files. Figure 4.7 visually demonstrates

this for the response time of clean files. AV Product A has a slightly different true mean

response time as the 95% confidence intervals do not overlap. However, this difference

could be as little as 3ms.
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Figure 4.7: Clean File Response Times Across Factors 1Gbps and 100Mbps

The implication of this data is that the AV Product B, AV Product C, and MaTR

detection mechanisms do not utilize more than 100Mbps bandwidth when scanning across

the network. Instead, the detection algorithms themselves and the computing resources

they require are still the limiting factor in the assessment of a file. This observation

suggests maximizing available bandwidth to a detection mechanism does not necessarily

improve file response time and is wasteful. At some unidentified level of bandwidth,

further improvement of performance for each detection mechanism necessitates

improving algorithm efficiency, parallelizing the applications, or increasing available

computing resources.

4.4.2 100Mbps with 5% Packet Loss Factor’s Impact on Performance. Inducing

5% packet loss made a statistically significant impact on the response times of all

detection mechanisms. Table 4.7 shows the degree of the change by showing what factor

the response times increased by when the 5% packet loss was induced. As the true mean
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response time lies within a 95% confidence interval, the table gives both a minimum and

maximum impact factor, with the true factor lying between those values. For example, the

true mean response time of AV Product A when scanning malicious files slows by at least

a factor of ≈12.8 (0.24s to 3.1s) and at most by a factor of ≈15.9 (0.21s to 3.4s). The

impact factors are calculated using the bounds of the confidence intervals from 100Mbps

response times and the 100Mbps with 5% packet loss response times as shown in the

following equations:

ImpactFactormin =
LowerBound5%PacketLossC.I.

U pperBound100MbpsC.I.
(4.1)

ImpactFactormax =
U pperBound5%PacketLossC.I.

LowerBound100MbpsC.I.
(4.2)

The minimum impact factor is measured from the maximum true mean response time

(upper bound of confidence interval) of the 100Mbps experiment to the minimum true

mean response time (lower bound of confidence interval) of the 100Mbps with 5% packet

loss experiment. Likewise, the maximum impact factor is measured from the lower bound

of the 100Mbps response time to the upper bound of the 100Mbps with 5% packet loss

response time.

Table 4.7: Changes in Response Time Resulting from Inducing 5% Packet Loss

Malicious Files Clean Files

Minimum Factor Maximum Factor Minimum Factor Maximum Factor

AV Product A 12.82968376 15.86795819 6.2653219 73.15924811

AV Product B 6.295521817 14.0224923 3.580720696 137.6911357

AV Product C 3.962962765 10.16744032 10.99160043 21.67112332

MaTR 226.5459126 333.698276 88.1469805 816.7159116

The data in Table 4.7 should not be used to compare the different detection

mechanisms, as they do not directly measure performance. For example, although AV
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Product C appears to have a lower impact factor when scanning malicious files, when

looking at the data from the experiments the response times are larger than the other

mechanisms. While the data in Table 4.7 is not directly useful, it does provide several

insights into the performance of the various detection mechanisms.

• Most apparent is that all detection mechanisms are significantly impacted by the

induction of 5% packet loss, with many of the response times increasing by at least

a factor of 10.

• MaTR appears to be impacted the most by the induction of 5% packet loss, with

impact factors ranging from 88 to 817. Two inferences are made from this. First,

MaTR is still in a development stage. No work has been made towards optimizing

MaTR for a network environment, it simply relies on the OS protocol. AV Product

A and AV Product B are specifically designed for network environments. This

results in sub-optimal responses to lost packets when retrieving file information.

Secondly, MaTR demonstrates some exceptional response times compared to the

other mechanisms with 100Mbps available bandwidth. If all detection mechanisms

experience similar response time increases when 5% packet loss is introduced,

MaTR’s impact factor will be larger than mechanisms with slower initial response

times. This can account for some of the impact factor growth.

• The intervals for the minimum and maximum impact factors are much larger for

clean files than for malicious files. This is tied directly to the respective confidence

intervals of the response times, and is discussed in greater depth in Section 4.4.3.

The difference is basically due to greater variance in file sizes of clean files.

4.4.3 Contrasting Clean and Malicious File Response Times. Validation testing

with AV Product C showed significant differences in response times between benign and

malicious files, regardless of file size. For this reason, the two file types are evaluated
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separately, as described in greater detail in Section 3.10. The separation of this data is

important as in most situations targets of malware scans will not contain high

concentrations of malware, if any. So, even though AV Product C operating in a 100Mbps

network environment requires an additional 10s to determine a file’s validity when

compared to the other detection mechanisms.

This phenomenon is not limited to AV Product C; there are several other instances

where a detection mechanism’s response time for clean files is slower than that of the

malicious files. Another observed difference is that the confidence intervals for the

response time on clean files are much larger than the ones for malicious files. Although

this disparity in the data is not directly related to this research, it is still worth a brief

analysis.

Detailed information on exactly how the various detection mechanisms operate and

why response times for malicious files is slower than clean files cannot be obtained.

However, a likely hypothesis is that the detection mechanisms perform some sort of

‘surface level’ scan on each file. This quick scan might determine whether a file is benign

or suspicious. If labeled as suspicious, a more thorough investigation of the file may

ensue, taking additional time. This theory also supports the findings for MaTR. MaTR

implements the same algorithm on both clean and malicious files and at each congestion

level the confidence intervals for the clean response times and malicious response times

overlap; thus there is no statistical difference between MaTR’s true mean response times

for clean file and malicious files.

Discrepancies in the confidence interval width between clean and malicious files are

easily explained by a greater variance in the file size. The clean files obtained from

Windows Server 2k3 contain much larger files, including several update files that were

larger than 300MB, a large number of files greater than 10MB, as well as many small files

that are only a few kilobytes. The largest malicious file was only 18MB, with an average
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file size of around 270KB. This variance in clean file size directly influences the width of

the response time confidence intervals.

4.5 Detection Accuracy

This section analyzes the detection accuracy rates between the different detection

mechanisms including true positive and false positive rates. Each experiment at the

various congestion levels employed the same data set of files. As expected, the various

congestion levels did not impact detection rates, and thus congestion is not considered in

this analysis.

The data in Table 4.8 shows the average detection rate observed amongst the ten

partitions, as well as the bounds of a 95% confidence interval. As with the response time

data, the true mean detection rate of each mechanism lies within the bounds of the

confidence intervals with 95% certainty. Figure 4.8 shows the data in a graph form for

easier comparison. AV Product B and MaTR detection rate confidence intervals overlap

with each other, but are higher than the other mechanisms. This means that they have a

statistically significant higher detection rate than both AV Product A and AV Product C,

but that there is no statistically significant difference between the two. AV Product C has a

95% statistically significant higher true mean detection rate than AV Product A.

Table 4.8: True Positive Detection Rates

Mechanism Average Detection Rate Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 0.972793229 0.967856584 0.977729873

AV Product B 0.9904474 0.988256692 0.992638108

AV Product C 0.983434099 0.980541184 0.986327014

MaTR 0.990810157 0.988282191 0.993338124
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Figure 4.8: Detection Rates for Malicious Files

AV Product A, AV Product B, and AV Product C all have zero false positives when

scanning clean files. MaTR, however had 27 false positives out of the 8238 clean files.

The false positive rate observed and the true mean’s 95% confidence interval is shown in

Table 4.9. The data shows that MaTR’s false positive rate is less than half a percent.

Table 4.9: False Positive Detection Rates

Mechanism Average False Positive Rate Lower Bound (γ=95%) Upper Bound (γ=95%)

AV Product A 0 0 0

AV Product B 0 0 0

AV Product C 0 0 0

MaTR 0.003277141 0.002210672 0.004343611
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4.6 MaTR’s Performance and Conclusion

This section focuses on MaTR’s performance compared to the other detection

mechanisms drawing statistical conclusions and synthesizing explanations for various

observations. The data does not reveal a definitive leading performer for all situations.

However, MaTR demonstrates a noticeably faster response time than the other detection

mechanisms when scanning malicious files at 1Gbps and 100Mbps. This is not the case

for clean files or when the congestion level includes 5% packet loss. The following

subsections address each of these observations.

4.6.1 MaTR’s Response Time Performance at 1Gbps and 100Mbps. As discussed

in Section 4.4.3, this research hypothesizes that when some commercial detection

mechanisms find a suspicious file, they conduct a more thorough investigation to ensure it

is not benign before labeling it malicious. This would explain why observations in the

previous sections reveal malicious file response times being slower than benign file

response times. MaTR does not contain such a mechanism, and runs the same detection

algorithm on every file. This could explain MaTR’s faster response times for malicious

files as well as having a higher false positive rate than the other mechanisms. When

scanning clean files in a 1Gbps and 100Mbps environment, MaTR’s true mean response

time is not statistically different than AV Product A or AV Product B.

False positives occurring with detection mechanisms can have a critical impact on the

target system with certain automatic responses, such as quarantining and deletion. For

example, should a false positive occur on an operating system file, it could cause the entire

system to crash. MaTR demonstrated 27 false positives, an average 0.33% false positive

rate, on executables that are all included in Windows 2k3 Server Edition installation and

subsequent updates. Many would consider this unacceptable as these are common

operating system files.
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In summary, it is difficult to argue that MaTR’s overall performance is truly superior

to the other mechanisms at 1Gbps and 100Mbps given the false positive rate for clean files

and the fact that there is no statistical difference in response time on clean files. As

discussed earlier, many commercial target environments generally contain little or no

malware so response time for clean files is often more important than for malicious files.

4.6.2 MaTR’s Response Time Performance at 100Mbps with 5% Packet Loss.

When 5% Packet Loss is introduced into the network environment, MaTR’s performance

plummets. For malicious files, MaTR is still faster than AV Product C, but statistically

slower than AV Product A and AV Product B. For clean files, MaTR is statistically slower

than all the detection mechanisms. As discussed in Section 4.4.2, this is likely due to the

fact that MaTR is still in development and has not been optimized to operate in a heavily

loaded network environment. This version of MaTR should not be deployed in such a

network if response times are critically important.

4.6.3 Detection Rates. MaTR demonstrates statistically superior true positive

rates than AV Product A and AV Product C. However, there is no statistically significant

difference in the true mean detection rate between MaTR and AV Product B; both are

exceptional at around 99% true positive rate. MaTR is the only mechanism to exhibit false

positives on the benign files.

Although MaTR’s performance was not outstanding when compared to the other

mechanisms, this experiment did not include novel malware as a sample set. MaTR

significantly outperforms commercial detection mechanisms in previous experiments in

regards to detecting novel malware [DRP+12] [Mer11]. all capabilties should be kept in

mind when considering any AV solution for deployment in a cloud-based environment.
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5 Conclusion

This chapter includes a summary of the research conducted and an overview of the

observed results. Key conclusions drawn from those results are also discussed. Section 5.2

provides recommendations for future work and potential follow on research.

5.1 Research Results and Conclusions

5.1.1 Goal #1: Construct a simplified cloud fileserver environment. The first goal

of this research is to model a simplified fileserver environment in which experiments are

conducted whose results can be extrapolated to a true cloud fileserver environment. The

network congestion levels are easily controlled for experimentation. This goal is

accomplished by creating virtual machines in VMware. A server operating Windows 2k3

is created for the fileserver and the detection mechanism and is connected by a virtual

network connection. VMware provides bandwidth and packet loss level controls over this

connection. The review of existing literature in Chapter 2 validates that, for the purposes

of experiments conducted in this research, experimental observations from this model are

valuable in a true cloud fileserver.

Although a true cloud fileserver are likely distributed in nature, the connections to the

various servers are the primary factor concerning file response time. Thus, the

performance results of the various detection mechanisms when scanning across a single

congested connection may be extrapolated to an environment with multiple connections to

the same data. Many other aspects of the NIST definition of cloud computing involve

capabilities offered to a consumer, and thus are ignored in this research’s model as there is

no true consumer.

5.1.2 Goal #2: Evaluate MaTR’s performance in regards to file response time.

The second goal of this research was to observe and analyze the latency of MaTR when
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scanning a file in an emulated cloud fileserver and compare that with commercial

detection mechanisms. Experiments are conducted at three congestion levels and

compared with three other detection mechanisms at the same congestion level. The results

of these experiments are summarized by congestion level.

• At 1Gbps, MaTR demonstrates a statistically significant faster true mean response

time when scanning malicious files than the other mechanisms. When scanning

benign files there is no statistically significant difference in true mean response time

between MaTR, AV Product B, and AV Product A. AV Product C is slower with

both file types.

• With a 100Mbps congestion level, the comparisons amongst detection mechanisms

are identical to 1Gbps. Furthermore, there is no statistical difference in true mean

response time of both clean and malicious files when network bandwidth is

decreased from 1Gbps to 100Mbps for AV Product B, AV Product C, and MaTR.

• When 5% packet loss is introduced to the 100Mbps congestion level, MaTR’s file

response time becomes the slowest for benign files, and the second slowest for

malicious files outperforming only AV Product C.

5.1.3 Goal #3: Evaluate MaTR’s performance in regards to detection accuracy.

The third goal of this experiment is to evaluate how MaTR performs in the same

environment with regards to detection rates. These are measured in true positive and false

positive rates. As expected, the varying congestion levels do no impact detection accuracy.

MaTR demonstrates a true positive detection rate between 98.8% and 99.3% with 95%

confidence, which outperformance AV Product C and AV Product A but is not statistically

better than AV Product B. However, MaTR exhibits a 0.221% to 0.434% false positive

rate, where no other detection mechanisms exhibit false positives.
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5.1.4 Research Conclusions. Several key conclusions are drawn from these

experimental observations. Reducing the congestion level from 1Gbps to 100Mbps has no

impact on the response time performance of AV Product B, AV Product C, and MaTR, as

would be expected. AV Product A is slowed by as little as 3ms. The conclusion this

research draws is that the unaffected mechanisms do not utilize more than 100Mbps when

scanning files across a network. Instead the detection techniques themselves and the

computational resources of the detection server are the limiting factor to performance.

This is key as network administrators should be aware that increasing bandwidth to a

cloud fileserver will not necessarily improve the performance of their detection

mechanisms, and other factors should be considered to improve performance.

Another conclusion is drawn from the fact that MaTR is impacted more severely than

the other detection mechanisms when 5% packet loss is introduced. The conclusion this

research draws is that the commercial detection mechanisms are optimized for network

congestion and more robust at handling packet loss, especially AV Product B and AV

Product A which are designed for server deployment. MaTR is only a research

proof-of-concept prototype currently, and has no optimizations for operating in a network

environment. MaTR requires the entire file to be transferred across the network and read

into memory using the default protocols of its programming language or the operating

system on which it is deployed.

The experimental observations validate that MaTR exhibits excellent detection rates

on known malware competing with, and outperforming many commercial detection

mechanism. The detection rates and response times observed also suggest that

commercial detection mechanisms might take extra precautions against false positives,

which requires more time. This accounts for why commercial detection mechanisms have

slower true mean response times on malicious files than benign files and lower true

positive rates. MaTR performs the same detection technique on all files, which explains
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why it outperforms commercial detection mechanisms when scanning malicious files, but

has equivalent runtime scan performance when scanning benign files.

The benign files this research uses as a sample set are collected from Windows 2k3

Server Edition and Windows updates. As such, false positives on operating system files

could lead to critical failures. MaTR exhibits the only non-zero false positive rates among

techniques tested. While the implications to performance are unknown, modifications to

MaTR to alleviate its false positives could negatively impact response time rates or reduce

true positive rates. As such, although MaTR demonstrates a faster response time on

malicious files when provided with sufficient bandwidth, this research concludes that this

advantage is somewhat nullified due to the false positive rate.

A final consideration is that this research does not employ novel malware as a sample

set. MaTR has demonstrated exceptional performance in detecting novel malware when

compared to commercial detection mechanisms in past experiments. Although this

capability is not demonstrated in this research, it should be considered when

implementing malware detection mechanisms in a true cloud fileserver environment.

5.2 Future Work

This section discusses future work and potential follow on research to this thesis.

• An excellent addition to this research would be to optimize MaTR for a network

environment. This could be accomplished in two ways. First, simply optimizing

how MaTR handles lost packets. This should allow MaTR to again perform

competitively with the commercial malware detectors in terms of runtime

performance. However, a more valuable research endeavor would be to change how

MaTR collects information from submitted files. Currently, MaTR reads the entire

file into memory but needs only a small amount of high-level file information to

determine a file’s validity. MaTR should be adjusted so that only the information it
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needs is requested and transmitted across the network. This could have significant

performance improvements when MaTR is deployed in a congested network

environment.

• Another future research endeavor would be to make MaTR more robust against

false positives, especially when it comes to operating system files. This research

could then observe the impact on response time performance, detection rates for

known malware, as well as the detection rates for novel malware. These results

should be compared with the performance of commercial detection mechanisms.

• An alternative to scanning files remotely would be to create a deployable package

implementing the MaTR methodology and sending it to the fileserver, and have it

report the results from the remote location. This capability is especially conducive

to MaTR as the entire program is a relatively small executable in its current state

compared with many commercial detection mechanism’s applications.
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Appendix A: Scripts

This appendix presents some of the scripts that are used to accomplish the

experiments.

A.1 Find and Delete Duplicate Executables

This script is used to find and delete duplicate executables that were used to train and

test MaTR in prior experiments [DRP+12]. The script uses the executable’s file name

(which has been renamed to the hash of the file) and compares it with tthose used in

pervious MaTR work [DRP+12].

1 Const newFolder = ” 32 ” ’ f o l d e r t o f i l t e r o u t a l r e a d y

e x i s t i n g e x e c u t a b l e s

2 Const e x i s t i n g F o l d e r = ” e x i s t i n g ” ’ t e x t f i l e c o n t a i n i n g

e x i s t i n g f i l e s

3 Const l o g F i l e = ” l o g . t x t ”

4 Dim f so , l o g

5

6 On Error Resume Next ’ t h i s i s s e t because t h e d e s i g n a t e d

f i l e may be l o c k e d from d e l e t i o n

7

8 ’ I n s t a n t i a t e t h e o b j e c t s

9 Set f s o = CreateObject ( ” S c r i p t i n g . F i l e S y s t e m O b j e c t ” )

10 Set e F o l d e r = f s o . GetFolder ( e x i s t i n g F o l d e r )

11 s e t e F i l e s = e F o l d e r . f i l e s

12 Set n F o l d e r = f s o . GetFolder ( newFolder )

13 Set n F i l e s = n F o l d e r . f i l e s

14 Set e F i l e s D i c t = CreateObject ( ” S c r i p t i n g . D i c t i o n a r y ” )
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15

16 ’ C re a t e d i c t i o n a r y o f e x i s t i n g f i l e s ( u s i n g HASHES)

17 c o u n t = 1

18 For Each f i l e i n e F i l e s

19 s e t c u r r e n t F i l e = f s o . OpenTextFile ( f i l e , 1 , True )

20 Do While ( c u r r e n t F i l e . AtEndOfStream <> True )

21 endIndex = −1

22 s= c u r r e n t F i l e . ReadLine

23 For c o u n t e r =1 To Len ( s )−3

24 i f Mid ( s , c o u n t e r , 3 )=” −>” Then

25 endIndex = c o u n t e r −1

26 e x i t f o r

27 End I f

28 Next

29 i f endIndex <> −1 then

30 f i l e n a m e = Mid ( s , 1 , endIndex )

31 i f not e F i l e s D i c t . e x i s t s ( f i l e n a m e )

then

32 e F i l e s D i c t . Add Mid ( s , 1 ,

endIndex ) , s

33 c o u n t = c o u n t + 1

34 end i f

35 end i f

36 Loop

37 next

38
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39 WScr ip t . echo ” F i n i s h e d b u i l d i n g d i c t i o n a r y , ” & c o u n t &”

e x i s t i n g f i l e s found ”

40 ’ S e t up l o g f i l e

41 Set l o g = f s o . C r e a t e T e x t F i l e ( l o g F i l e , t r u e )

42 l o g . WriteLine ( ” D u p l i c a t e f i l e names t h a t were d e l e t e d : ” )

43

44 ’ D e l e t e D u p l i c a t e s

45 c o u n t = 0

46 For Each f i l e i n n F i l e s

47 i f e F i l e s D i c t . E x i s t s ( f i l e . name ) then

48 l o g . WriteLine ( e F i l e s D i c t . I t em ( f i l e . name ) )

49 f i l e . D e l e t e ( )

50 c o u n t = c o u n t + 1

51 End I f

52 Next

53 W s c r i p t . Echo ” T o t a l D u p l i c a t e s Removed : ”&c o u n t

54 l o g . WriteBlankLines ( 2 )

55 l o g . WriteLine ( ” T o t a l D u p l i c a t e s Removed : ”&c o u n t )

56 l o g . Close

57

58 s e t f s o = Noth ing

59 s e t e F i l e s D i c t = Noth ing
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Appendix B: Examples of Experiment Results

This chapter contains examples of results from some of the experiments as well as

their analysis. Table B.1 is an example of one observation and the calculation of the

confidence interval for file respone time. Tables B.2 and B.3 show the results of validation

tests to ensure that the execution of simultaneous virtual machines does not impact the

performance of the detection mechanisms residing on those virtual machines.
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Table B.1: Example of Experiment Results and Confidence Interval Calculations using
MaTR on malicious files at 1Gbps

Partition Time (s) Files Scanned Mean File Response Time (s)

1 25.6 827 0.03095526

2 24.7 827 0.029866989

3 21.9 827 0.026481258

4 30.8 827 0.037243047

5 27.7 827 0.033494559

6 23.6 827 0.02853688

7 33.5 827 0.04050786

8 23.6 827 0.02853688

9 31.2 827 0.037726723

10 33.5 827 0.04050786

Sample Mean 0.033385732

Standard Error 0.001660547

Confidence Level 0.95

Critical Value 1.959963985

Margin of Error 0.003254613

C.I. Lower Bound 0.030131119

C.I. Upper Bound 0.036640345
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Appendix C: VMware Bandwidth Controls

Figure C.1 shows the bandwidth controls available for the LAN segments in a

VMware team.

Figure C.1: Bandwidth Controls in VMware
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